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i Summary
fusse ¢

--We diseuss a method for the estimation of unknown
parameters (variable as well as constant) occurring in
& hyperbolic system, in the context of a seismic appli-
cation. present both theoretical results and some
numerical/(test) examples. -
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We have developed a numerical algorithm, and a
corresponding convergence theory to solve a one
dimensional “"seismic" inverse problem. The response
in certain classes of seismic experiments can be
modeled by the following hyperbolic partial differen-
tial equation with associated boundary and initial
conditions:

2
Q0 TF =g @ B o0 xe 0]

28(4,0) + kyu(t,0) = s(t;k)

() vk, H(e,1) =0 (M

u(0.x) = ¢(x)

%% (0,x) = 4(x).

Here x represents depth below the surface of the earth,
u represents displacement, q](x) is the mass density

of the medium (in the most general case an unknown),
and qz(x) is an unknown elastic modulus. The boundary

condition at the surface (x=0) is an elastic boundary
condition involving the unknown (negative constant)
ky» and an unknown source term s(t;k). For our treat-

ment of the problem it is not necessary to assume that
s is an impulse. In the numerical examples presented
below, it has been assumed that s(t:k) has a known
form, and only the unknown k (a constant vector inR")
is to be identified, but this also is not essential.
We show for example, that qz(x) (similar remarks are

valid for s) can be identified as a function without

a priori knowledge of its shape. The ideas in this
case are similar to those in E;] where problems with
coefficients which are unknown functions of both space
and time are discussed for parabolic equations. At the
bottom boundary (x=1), an absorbing boundary condition
is imposed, involving an unknown (positive constant)
kz. The purpose of this condition is to 1imit the
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interval of computation without producing artificial
reflections; it allows down-going waves to pass through
the boundary undisturbed, while annihilating up-going
waves.

We assume we have data observations, }1. corres-
ponding to u(ti.o). a solution of (1) evaluated at the
surface. The inverse, or identification problem con-
sists of minimizing a least-squares function

n. 2
J(q) = 1ZIIy‘- u(t,,0:q)| over an appropriately chosen
constraint set Q. Here (t,x) - u(t,x;q) is the
solution of (1) corresponding to q(x) = (q1(x), qz(x).
kyokgsk). We follow the general approach developed in

[3] and [1]; we first reformulate the identification
problem in an abstract setting, then define a sequence
of approximate finite dimensional identification prob-
lems, the solution of which generate parameter esti-
mates which converge to a solution of the original
fdentification problem.

Convergence

Motivated by the fact that our differential equa-
tion can be written as a system using the variables

(u,uy), we define a Hilbert space X(q) = V(q) x Lz(q)
where VY(q) is HI(O.I) with inner product
1

VWL (q) z é qzovDudx - qz(O)k]v(O)w(O). and Lz(q) is

1
n°(o.1) with inner product Vg g g qyvwdx. The
’
X(q) tnner product is then given by XY E“l'yl’v(q)

+ <XZ'y2>0.q where x = (x‘ nxz)T, y= (.Y] vyz)T. After

a straightforward transformation to a system with
homogeneous boundary conditions, system (1) can be
rewritten in X(q) as

2(t) = AlQ)z(t) + 6(t;a)

(2)
2(0) = z,(q)
U(t.')
ut(t.-)) » the
boundary conditions are incorporated into the domain
of the operator A(q) by defining Va(q) =
(v € V(@) N HE(0,1) | Dv(0) + k,v(0) = 0} and

domA(q) = *(:)eva(q) « W(0,1) v(1) 4k 0u(1) = of.
and A(q) is the unbounded inear operator defined by
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where 2(t) € X(q) is identified with




A{q) =
(1/76,)0(a,0) 0

With X(q) and A(q) so chosen, for each q A(q) is a dis-
sipative operator in X(q) and it can be shown that in
fact Alq) is the generator of a Co-semigroup T(t;q) on

X(q). <Standard semigroup theory can then be used to
show that equation (2) has a unique mild solution:

t
z(tiq) = T(tiq)zy(a) + é T(t-53q)6(s;q)ds (3)
and the identificat{on problem can be restated as
n . 2
(ID) Minimize J(q) = iZ1!yi - z‘(t‘)lx=° over q € Q

subject to z(-;q) satisfying (3), where z, repre-
sents the first component of z.

Before formulating the approximate identification
problems, we first define finite dimensional subspaces
xN(q). let SJ(AN) be the subspace of Cz cubic splines
{as in [6], pp. 78-81) corresponding to the partition
AN = (x‘}?.o » Xy ® i/N, and then define XN(q) to be
that subspace of S3(a") x s3(aV) which satisfies the
boundary conditions corresponding to q, i.e.,

X"(q) C domA(q). The space XN(q) can be expressed as
the span of a set of 2N+ 3 basis elements, which are

straightforward modifications of the standard spline

basis elements of Sa(AN) x Sa(AN) (see [5] or [4, p. 38]
for details). As a result of these modifications, the
new basis elements, and thus the subspaces, depend on
the unknown parameter q. It is clear then, that as we
iterate on q, these spaces will change.

One assumption we make about the constraint set Q
is that each component is uniformly bounded above and
below, implying that as q ranges over Q, the X(q) norms
will be uniformly equivalent, and hence the spaces X{q)

will be equal as sets. With this in mind, let PY(q):
X(g) -~ XN(q) be the orthogonal projection of X(§) onto

x"(q) in the X(3) norm (for a precise statement of this,
one should introduce the canonical isomorphism which

associates elements of X(G) with those in the equivalent
space X(q), but to shorten this presentation, we will

omit such notation); whenever q and q are the same the
projection will be written as P'(g). Oefine AV(q) =
Pu(q)ﬁ(q)PN(q) and define the approximate system in
M(q) as

i"(t) * A"(q)z"(t) + P"(q)c(t;q) (*)
20) « PMa)zgla)

The operator A"(q) inherits the dissipativity of A(g),
and is also the generator of a Co-semigroup, TN(t;q) on
X(q). Moreover, we can establish the existence and
uniqueness of mild solutions to ‘4) and write them as

.

r - e e - . L) -
. ( "OA ‘s .l . .. 'n .l .\‘\ Lt \‘-'\ (AN

el .
A PN AN A

t
M(tia) = ™Mtia)P @)z la) + £ T(t-si0)PM (@) (s5a)ds.
0
()
We now pose the approximate identification problem as

2
over

N N 7
(10")  Minimize J"(q) = 121 x=0

q € Q subject to z"(-;q) satisfying (S).

It is important to note that since XN(Q) is a
finite dimensional space, (4) 1s in fact an initial
value problem for a system of ordinary differential
equations. Furthermore, due to the nature of the
spline basis functions, this system possesses desirable
numerical properties; for example, the matrix repre-

sentation for AN(q) is sparse and banded. We will dis-
cuss below a spline representation for qz(x). which

makes solving (4) even more tractable.
The identification problems (IDN) can be solved
using IMSL routines (a Levenberg-Marquardt algorithm

for the optimization, Gear's method to solve the dif-
ferential equations) with a sequence of parameter esti-

mates {q“} thus generated. One then would like to

verify that this sequence, or some subsequence thereof,

ion;erges to a solution, q°, of the original problem,
10).

We use the following version of the Trotter-Kato
Theorem,
Theorem: Let (B,|-|) and (BN.I-IN). N=1,2,..., be
Banach spaces and let » : 8B + BN be bounded linear
operators. Further assume that T(t) and T“(t) are Co-
semigroups on B and B" with infinitesimal generators
3 and RN, respectively. If

(i) tim |an|N = |x| for all x € B,
Now

(11) there exist constants M, , independent of N

such that |TN(t)|N < Met, for t > 0,

there exists a set DC B, D C dom(ﬂ). with
(xo- A}D = B for some Ag > 0, such that for all
x € D we have

(iii)

W Mg~ 0 as N e
then |TN(t)xMx - MT(t)xly - 0 as N« o, for al1 x€ 8,
uniformly in t on compact intervals in [0,=).
We apply this theorem by identifying (B,|-|) with
(X(@)u1+13)s (8% 1< 1) with (x(@"), -] 4)o & with AGG),

and AN with AM(q"), and we assume (qM}Tis an arbitrary
sequence such that ¢ + i in an appropriate sense.

Any version of the Trotter-Kato Theorem would
involve some convergence statement about the generators
A"(q") and A(3). As mentioned earlier, the spaces
x"(q") and the domains of the approximate operators
A“(q") change with qN. Moreover, elements of domAN(qN)
satisfy the boundary conditions corresponding to qN.
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while elements of domA(q) satisfy the boundary con-
ditions corresponding to q, and in general there is no
inclusion relation between these sets. This necessi-

tates the use of an operator N X(q) - X(q ) which
maps elements of domA(q) into those of dumA(qN) so
that it will be possible to compare these elements.
Once the Trotter-Kato Theorem has been used to
show the convergence of the semigroups, it can be shown
that also the {(mild) solutions, zN(t;qN) of (4) con-

verge in x(qN) to the {mild) solution 2{t;q) of (2)
(again, a precise statement of this convergence would

require the use of the canonical isomorphism) whenever

qN -~ q in an appropriate sense. With this result and
the following theorem (from [4] or [5]) it can be shown

that q* is a solution to the inverse problem.
Theorem: Assume Q is compact in the C x H’ x R2+k
topology. If q + z43(q), q » PN(q)z. q ~ ™(t:q)z,

2 € X(q) are continuous in this same Q-topology, with
the latter uniformly in t € [0,T], then

-~

(i) there exists for each N a solution q N of (ID )
and the sequence (6") possesses a convergent
subsequence aNk -+ q.

(i1) If we further assume that, for any sequence
{qj} in Q with g - q, we have zJ(t q ) +
z(t;q) as j - = uniformly in t € [0,T], then q
is a solution of (ID).
The proofs and details of all the results stated above

can be found in [5] and are variations of the general
framework developed in [3].

Estimation of Functional Coefficients

1f we make further smoothness assumptions on the
variable coefficients to be estimated, and stronger
compactness assumptions on Q, we can search for an
approximation to each of these coefficients as a
finite linear combination of cubic spiines, reducing
the infinite dimensional optimization problem to a
finite dimensional one. In our numerical examples, we
assume for computational ease that q1(x) =1, and

search for qz(x) in a fupction space. For notational
convenience, we will write Q as 0] x Q2 x 03, so that
i = (9 (x).0y(xhkykpk) € Q, then a € 0y, q) € 0y,
and (k],kz.k) € Q3 If we let | (qz( )) denote the
interpolate of a in the space of cubic splines S (A )s
then following arguments similar to those in [2], we

can conclude that XM(QZ) has the following represen-
tation:

M+3 M
1 (02)' QZ(X) fo,1]+ R qu x)= z ciBi(x),c, € ti!

where (BM(x)) are the basis functions for 53(AM) and
each ¢, is 2 compact subset of R. Searching for (an
approximate) 9, in 1 (02) is then equivalent to search-

3
ing hr(q.%.“.mw3{1nc1rtz .:cmzcn
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Define Q : {(] (qz) k‘.kz.k) |qze 02.(k1.k2.k)€ 0 i
We can fix M and iteratively solve (ID ) over Q to
obtain a sequence {q (M)) with q (M) (qz(M) k]. 2.
k ) and q';(n)e I“(QZ) The convergence theorems

discussed in the previous section guarantee that this
sequence contains a subsequence (relabeled for con-

venience) such that q"(M) - q(M), where 3(M) satisfies
J{q(M)) < J(q) for any q € Q™. That this sequence
{Q(M)}y 1s in fact a set of good approximations to a
solution of (I1D) can be argued as foliows. Under the

proper compactness assumptions about Q, QM will also be
compact, ensuring the existence of a subsequence

- *
(relabeled, if necessary ) of q(M) such that q(M) - g
in Q. Under further (although not too restrictive)
assumptions, among them that the solution z(t;q) 1s
continuous in q (which can be proved using the Trotter-
Kato Theorem), one can prove that q* is a solution to
(ID). This proof involves the compactness of Q and
E;andnrd spline error estimates such as those found in

Numerical Examples

In the examples to be presented below, the “data”
has been generated using an independent finité dif-
ference scheme, where known “true" values of the param-
eters were preassigned. We begin each example with an

initial guess qo and a choice of N and solve (IDN) to

obtain qN. We then use this QN as the initial guess
for the next value of N. Al]l examples were produced
either on an IBM VM/370 or a CDC 6600.

Example 1 For this example we parameterized q, as
qz(x) = 3/2 + (/=) tan” [q21(x qzz)]. where q,, and
q,, are to be estimated we used s(t;k) = 0, and

fnitial conditions #(x) = e*, y(x) = - 3¢*. Data
points were chosen at x = 0 and fifteen equally spaced
time values in (0,1]. We obtained the following

results:

a9y K Ky Ma")
N=4 |5.873 | 0.503 | -0.995 | 3.005 | 0.15x10"°
N=8 |5.929 | 0.497 | -1.001 | 3.001 | 0.12x107%
True
Values | 6.0 0.5 -1.0 3.0
Starto
Up (¢%) 5.0 | 1.0 |-2.0 | 2.0

Example 2: We added random noise to the data in this
example, at a level of about 3%. We searched for 9

as a constant, we used S{t;k) = k](l e 5t)e"zt. and
used zero initial conditions. Data points were chosen‘

at x = 0 and fifteen equally spaced time values in
We obtained these results:

(0,2].

A .J} I;izlisﬁtihe Fly *q



N cN -N N N N, N

LI kp koo ok (@)
N=4 12.887,2.076-0.996 | -2.110 | 1.009 | 0.12x10"3
Ne8 52947 2.032 ' -1.013 ] -2.038 | 1.027 | 0.17x1073
Values | 3.0 -1.0 -2.0 1.0

Start

|
{
True | !
wp @ |20 {1.5 ‘

-0.5 -1.0 2.0

Example 3: In this example, we searched for qz(x) in
the space of cubic splines; the true 9 used was
9, (x) * 1 S + tanh(6(x-4)]. We used s(t;k) = 0, and

(x) = ¢*, v(x) = - 3¢*. wWe did not search for the
boundary parameters in this example; the true values,

*
ky=-1.0, k; = 3.0 were used. The data points were

chosen at seven equally spaced spatial values in [0,1]
and three equally spaced time values in (0,1]. Our
initial guess for qztx) was the constant function

qg(x) * 6.0. With N=4 (for the state approximation)
and M= 1 (coefficient approximation) we obtained an

estimate, q;. for our functional coefficient such that
lag - q;|o = 0.099, and J%(q%) = 0.48x10°2. e have

several spatial observations in this example rather
than only the one at the surface; this is more repre-
sentative of problems that arise in treating data from
"bore-hole"” type of seismic experiments, in which
receivers are located at various points down a well.
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